Activity: Understanding Analoq Inputs for Arduino

Objective:

This activity is very
different from all
the Arduino based
activities we have
done so far. Each
of the previous
activities made use
of “digitalRead();”
or “digitalWrite()” to
make a given pin
HIGH and LOW or
to check whether
the pin has gone
HIGH or LOW. But
not all types of
inputs have just 2
possible states.

Consider physical
entites such as
Temperature, Light,
Voltage, Soil Moisture, Touch etc... .they all have a continuously varying value and
not just 0 and 1.

o

In other words these entities are not Digital but Analog. And so these cannot be read
by “digitalRead();”. Just as we have 0 and 1 for a digitalRead();, we have values
ranging from 0 to 1023 for an “analogRead();”

So, in today’s activity we will:

1. Understand Digital and Analog inputs.

2. How Arduino receives and processes analog inputs.

3. Mathematics and physics involved.

4. Simple program to read an analog input pin and send it to the serial monitor.



Materials Required:

S.no.

Part

Qty

Arduino (UNO / Nano)

Breadboard

--------------------------------
--------------------------------

-------------------------------
---------------------------------

USB cable for Arduino




M-M Connection wires 10

1Kk resistor 2
(Brown Black Red Golden)

5mm Red LED 1

5mm Green LED 1




Connection Diagram:

The connection
diagram shown here is
designed around the
Arduino UNO.

Explanation:

This is a rather simple
activity to set up as it
uses less parts and there is no electronic sensing component specifically used to
detect touch. It is just 2 wires, whose metal tips are used as Touch sensitive inputs.

The Touch sensitive terminals are such that one of the wires (Green) is connected
directly to Arduino Analog pin 2 (A2). The other touch sensitive terminal is directly
connected to +ve of the breadboard.

The Red LED is connected such that its +ve terminal is connected to the Arduino’s
digital Pin 2 (D2) and the -ve terminal is connected to the 1k resistor. The other side
of the 1k resistor is connected to the -ve of the Breadboard.

The Green LED is connected such that its +ve terminal is connected to the Arduino’s
digital Pin 3 (D3) and the -ve terminal is connected to the 1k resistor. The other side
of the 1k resistor is connected to the -ve of the Breadboard.

Lastly, the Arduino’s 5v pin is connected to the +ve of the breadboard and the Gnd
pin is connected to the -ve of the breadboard.



Arduino Code:

The Arduino code is simple but needs to be done in 2 parts. Let's see why. We have
1 analog input whose value can range from some minimum value to some maximum
value. And we have 2 outputs, one of which we want to turn On (and the other
remains Off) when the present value of the sensor is below a given threshold (just a
fancy word for limit). We want the second Output to turn On (and the first remains
Off) when the present value of the sensor is above the given threshold.

If we don't know where to place this threshold, we won'’t be able to set when the
Red LED goes On or Off and when the Green LED goes On or Off. So first, we need
to find out the value of this threshold. For this, we simply send the value of the
sensor continuously to the Computer using "Serial.printin();”.

Here is that initial code:

#define TOUCH A2 //pin A2 named as LDR

int touch value; // variable for touch sensitivity

void setup()

{

pinMode (TOUCH, INPUT) ; // TOUCH pin as Input

Serial.begin(9600) ;
}

// begin serial comm at 9600 bps

void loop ()
{

touch value = analogRead(TOUCH); //read TOUCH pin and store

Serial.println(touch value);
delay (200) ;
}

// send stored value to computer
// wait for 200ms



Explanation:

#define TOUCH A2 //pin A2 named as LDR

int touch value; // variable for touch sensitivity

Here, we are telling the Arduino that from now on, we will call pin A2 as TOUCH and
then take an Integer type variable “touch_value” for storing the analog value.

void setup ()

{
pinMode (TOUCH, INPUT) ; // TOUCH pin as Input

Serial.begin(9600) ; // begin serial comm at 9600 bps

Here, inside the setup function, we are declaring that we are going to use TOUCH
(pin A2) as Input and that we are beginning a serial communication with the
Computer at a speed of 9600 bits per second (bps).

void loop ()
{

touch value = analogRead(TOUCH); //read TOUCH pin and store
Serial.println(touch value); // send stored value to computer
delay (200) ; // walit for 200ms

Here, inside the loop function, we are continuously:

1. Reading the TOUCH pin and storing its value in the “touch_value” variable.
2. Printing the value of this variable on the serial monitor (computer’s USB).
3. Waiting for a short time to make sure the sent value is printed for sure.

Once this code is compiled and uploaded, we will see a continuous stream of live
values printed on the serial monitor terminal. These values will change suddenly
when we touch the metal tips of the connection wires with our fingertip. These
values will again change suddenly when we move our finger away from the touch
points.



We are looking for this approximate value on one side of which we will call it touch
and on the other side of it we will call it no touch. This value need not necessarily be
the same for everyone. It will vary from person to person and place to place,
depending upon how moist or dry your hand is.

Let's say we found this threshold value to be 900. So now, we will turn On Red on
one side (greater than) of this value and turn On Green on the other side (less than)
of this value.

So, we will use two sets of “if’ conditions to compare the present value to the
threshold. Then, depending on whether the value is less than or greater than 900 we
will “digitalWrite();” the Red and the Green LEDs accordingly.

Given below is the complete Arduino code for doing the process that was just
described.

#define TOUCH A2 //pin A2 named as TOUCH

#define Red 2 //pin 2 named as Red

#define Green 3 //pin 3 named as Green

int touch value; // variable for touch sensitivity

void setup ()

{
pinMode (TOUCH, INPUT); // TOUCH pin as Input
pinMode (Red, OUTPUT) ; // Red pin as Output
pinMode (Green, OUTPUT); // Green pin as Output

Serial.begin (9600) ; // begin serial comm at 9600 bps

void loop ()

{
touch value=analogRead (TOUCH); //read TOUCH pin and store in variable

Serial.println(touch value); // send stored value to computer
delay (200) ; // wait for 200ms



if (touch value > 900)
{
digitalWrite (Red, HIGH) ;
digitalWrite (Green, LOW) ;
}

if (touch value < 900)
{
digitalWrite (Red, LOW) ;
digitalWrite (Green, HIGH) ;
}

//

//

//

//

//
//

if value more than threshold

turn Red LED On

turn Green LED Off

i1if value less than threshold

turn Red LED Off
turn Green LED On

Here, we added the comparison part using the “if”. One “if’ compares if the value is
Greater than 900 while the other “if” compares if the value is Less than 900.

Consequently, the code does the following:

1. If the present measured analog value is greater than 900, the Red LED
is turned On and the Green LED is turned Off.

2. If the present measured analog value is less than 900, the Red LED is
turned Off and the Green LED is turned On.



Outcome and Observations:

1. Analog inputs or analog entities are those which have more than 2 possible
values such as Temperature, Light, Distance, Touch, Soil moisture etc. Such
inputs are processed by the Arduino using the “analogRead()” function.

2. In an Arduino Nano or UNO, the values of an analogRead() can range from O -
1023. Thus we have a total of 1024 possible values for any analog input
received by the Arduino.

3. Since Arduino can receive a maximum of 5v as analog input, the resolution
comes out to be (5/1024) volt/division. This means if the analogRead(); returns
a value of 100 then the voltage on the analog input pin is:
100 x (5/1024) = 0.488 Volts

Thus 0 = 0v, 1023 = 5v and 100 = 0.488v and so on.

4. Just like the touch points, any other component can also be placed such as an
LDR light sensor, an IR sensor, a water overflow sensor etc. They will work in
the same way but with different threshold values.

5. All that is happening here is a change in resistance between the two points.
So, anything that causes a change in resistance can be electrically measured
using this technique.



