
W
itB
lox

Activity: Generate Beeping Patterns using a Push Button and Buzzer

Objective:

So far in our activities we have already
controlled single as well as multiple
LEDs with the Arduino program. We
have already seen how to control outputs
using “digitalWrite”. But LEDs are not
the only output devices that can be
interfaced with the Arduino.

It is a well established fact that “Light”,
“Sound”, and “Motion” are the three best
tools to impart knowledge in a way that it
stays with students. And so far we have
dealt with only Light in the form of
different colored LEDs. But digital
systems don't just have LEDs as
Outputs, they have other types of
Outputs as well and so we need to learn
how to interface these Output devices with the Arduino.

One of the most commonly used output devices is the Buzzer. A Buzzer is a simple
electronic component which produces a continuous sound output when powered up.
You can find a buzzer inside alarm clocks, set-top boxes, microwave ovens, washing
machines, mobile phones, various alarms and security systems etc. A simple
buzzer can do a lot more than producing a continuous sound output. It can be
modified to produce different beeping patterns so that the listener can understand
the type of notification depending on the pattern without even going in front of the
system.

So, in today’s activity we will first learn how to connect a Buzzer to the Arduino, then
we will learn how to control this Buzzer using the “press” and “release” operation of
a push button and finally, how to use the button to generate different beep patterns
using the button and the buzzer. This activity will be divided into 2 parts.

1. Controlling the Buzzer with a push button.
2. Producing different Beep patterns based on a counter value which will be

changed every time the button is pressed.



W
itB
lox

Materials Required:

S.no. Name Qty Image

1 Arduino 1

2 Breadboard 1

3 M - M jumper wires 10



W
itB
lox

5 USB cable for Arduino 1

6 Resistors:
10k (Brown Black Orange)

1

7 5v Micro Buzzer 1

8 4-pin tact switch 1



W
itB
lox

Part 1:

Connection Diagram:



W
itB
lox

Explanation:

Looking at the connection diagram shown above, some things are immediately
evident:

1. A 10k resistor is connected as pull-up between the +ve of the breadboard and
the top-right pin of the push button as shown in the above diagram.

2. One side of the Push button switch is connected to Digital Pin 2 (D2) of the
Arduino while the other side is connected to -ve of the Breadboard with a
connection wire (shown with the black line just below the switch).

3. The +ve and -ve power pins of the Arduino are connected to the +ve and -ve
lines of the Breadboard.

4. Pressing the Button connects Pin 2 (D2) of the Arduino to Gnd (-ve power)
and releasing the button leaves the Pin 5 connected to 5v through the 10k
resistor acting as an external pull-up.

5. The Buzzer is connected such that its +ve pin is connected to Digital Pin 3
(D3) of the Arduino with a connection wire (shown in) while its -ve pin is
connected to the -ve of the Breadboard with a connection wire ()

Arduino Code:

LEDs give Light as output and we have already learnt how to control single as well
as multiple LEDs using Arduino code as well as a Push Button. Now, we move on to
produce sound output using a Buzzer.

There is absolutely no difference whatsoever in the logic that turns an LED on-off or
a Buzzer on-off. All we need to do is specify the Arduino pin to which the buzzer is
connected and then use the “digitalWrite(pin, state);” function to turn the Buzzer On
or Off using HIGH or LOW inside the digitalWrite.



W
itB
lox

Additionally, we need to keep checking continuously whether the Button is in the
Pressed state or Released state. We want the Buzzer to be On when the Push
Button is in its Pressed state and Off when the Push Button is in its Released state.
Notice that Pressing the Button makes the pin LOW while turning On the Buzzer
makes the pin HIGH. So the relation between the input and output is Opposite.

So, the logic of Buzzer On is inverse of the logic of Button On.

This will be more clear when you go through the code below.

Here is the Arduino code.

#define Buzzer 3 // defining pin 3 as "Buzzer"
#define Button 2 // defining pin 2 as "Button"

int Button_state;

void setup()
{
pinMode(Buzzer, OUTPUT); //declaring "Buzzer" as output
pinMode(Button, INPUT); //declaring "Button" as input

}

void loop()
{

Button_state=digitalRead(Button); //check if button pressed
digitalWrite(Buzzer, !Button_state); // turn On the Buzzer

}

Explanation:

#define Buzzer 3 // defining pin 3 as "Buzzer"
#define Button 2 // defining pin 2 as "Button"

The first two lines are simply defining which pins are going to be used as what. This
makes it easier for the coder or user to refer to the pins in a more human
understandable form. So, instead of referring to them using numbers, we give them
names such as Buzzer and Button.



W
itB
lox

int Button_state;

In this line we are declaring that we are going to use an Integer type variable with
the name “Button_state”. A variable can be of many types depending on the value
we want it to hold. It can be an Integer (number without a decimal point), a
Character (a-z or A-Z), a String (set of alphabets e.g. “robot” or “ROBOT” or
“Robot”) etc.

void setup()
{
pinMode(Buzzer, OUTPUT); //declaring "Buzzer" as output
pinMode(Button, INPUT); //declaring "Button" as input

}

Here we are declaring that the “Buzzer” will be used as an Output and that the
“Button” will be used as an Input. Note that, here, we are using “INPUT” instead of
“INPUT_PULLUP”. This is because Pressing the Button makes D2 LOW and
Releasing it makes D2 HIGH. This default HIGH state for pin D2 is provided here by
the external 10k resistor acting as Pull-Up.

void loop()
{

Button_state = digitalRead(Button);
digitalWrite(LED, !Button_state);

}

Here, we are first reading the state of the Push Button and storing it in the variable
“Button_state”. Pressed is stored as a 0 and Released is stored as a 1. And the we
are turning the LED On or Off by writing this 0 or 1 on the “LED” pin i.e. D13.



W
itB
lox

Part 2:

Connection Diagram: (connections remain unchanged from part 1)

Explanation:

In the second part of the activity, there is no change in the circuit components or its
connections. Take a look at the above connection diagram and you will observe the
following:



W
itB
lox

1. A 10k resistor is connected as pull-up between the +ve of the breadboard and
the top-right pin of the push button as shown in the above diagram.

2. One side of the Push button switch is connected to Digital Pin 2 (D2) of the
Arduino while the other side is connected to -ve of the Breadboard with a
connection wire (shown with the black line just below the switch).

3. The +ve and -ve power pins of the Arduino are connected to the +ve and -ve
lines of the Breadboard.

4. Pressing the Button connects Pin 2 (D2) of the Arduino to Gnd (-ve power)
and releasing the button leaves the Pin 5 connected to 5v through the 10k
resistor acting as an external pull-up.

5. The Buzzer is connected such that its +ve pin is connected to Digital Pin 3
(D3) of the Arduino with a connection wire (shown in) while its -ve pin is
connected to the -ve of the Breadboard with a connection wire ()

Arduino Code:

Now that we have already understood how a push button works for Buzzer, we
move on to generate different Beeping patterns using the same Buzzer and Button
setup .

The logic is not exactly the same as LEDs but quite similar. We take an integer type
Counter variable and increment it every time the button is pressed. And depending
on the present Value of the Counter variable we play different Beeping Patterns.

Here, we use a new technique called “functions”. A function is a group of statements
that get executed whenever the name of the function is called. A function is written
separately outside the ”setup” or “loop” sections. All this will be much clearer once
we go through the code.



W
itB
lox

Here is the code for generating different beeping patterns with a push button switch.

#define Buzzer 3 // defining pin 3 as "Buzzer"
#define Button 2 // defining pin 2 as "Button"

int Button_state; // variable to store Button status
int Counter=0; // variable to store Counter value

void Beep_pattern1() // first beeping pattern
{
digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF
delay(50); // wait for 50ms

digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF
delay(50); // wait for 50ms

digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF
delay(50); // wait for 50ms

digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF
delay(50); // wait for 50ms
}

void Beep_pattern2() // 2nd beeping pattern
{
digitalWrite(Buzzer, HIGH);
delay(20);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(30);
digitalWrite(Buzzer, LOW);
delay(30);



W
itB
lox

digitalWrite(Buzzer, HIGH);
delay(30);
digitalWrite(Buzzer, LOW);
delay(30);

digitalWrite(Buzzer, HIGH);
delay(30);
digitalWrite(Buzzer, LOW);
delay(30);
}

void Beep_pattern3() // 3rd beeping pattern
{
digitalWrite(Buzzer, HIGH);
delay(30);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(30);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(400);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(30);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(30);
digitalWrite(Buzzer, LOW);
delay(50);
}

void Beep_pattern4() // 4th beeping pattern
{



W
itB
lox

digitalWrite(Buzzer, HIGH);
delay(200);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(50);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(50);
digitalWrite(Buzzer, LOW);
delay(50);

digitalWrite(Buzzer, HIGH);
delay(50);
digitalWrite(Buzzer, LOW);
delay(50);
}

void setup()
{
pinMode(Buzzer, OUTPUT); // declaring "Buzzer" as output
pinMode(Button, INPUT); // declaring "Button" as input

}

void loop()
{
Button_state=digitalRead(Button); //check if button pressed

if(Button_state == LOW) // if button is in pressed state
{
Counter = Counter + 1; // increment Counter by 1
delay(500); // wait for half a second

}

if(Counter == 1) // if Counter value is 1
{
Beep_pattern1(); // play 1st pattern
delay(1000); // wait for a second



W
itB
lox

}

if(Counter == 2) // if Counter value is 2
{
Beep_pattern2(); // play 2nd pattern
delay(1000); // wait for a second

}

if(Counter == 3) // if Counter value is 3
{
Beep_pattern3(); // play 3rd pattern
delay(1000); // wait for a second

}

if(Counter == 4) // if Counter value is 4
{
Beep_pattern4(); // play 4th pattern
delay(1000); // wait for a second

}

if(Counter == 5) // if Counter value is 5
{
Counter = 0; // reset Counter to 0

}
}

Explanation:

The above code does the following:

1. Check whether the push button is pressed or not.
2. If the button is pressed, increment a Counter value by 1.
3. If the Counter value is 1, play beeping pattern 1 on the Buzzer.
4. If the Counter value is 2, play beeping pattern 2 on the Buzzer.
5. If the Counter value is 3, play beeping pattern 3 on the Buzzer.
6. If the Counter value is 4, play beeping pattern 4 on the Buzzer.
7. If the Counter value is 5, reset the Counter value back to 0.



W
itB
lox

#define Buzzer 3 // defining pin 3 as "Buzzer"
#define Button 2 // defining pin 2 as "Button"

These lines define that the Buzzer and the Button are connected to Arduino digital
pins 3 and 2 respectively.

int Button_state; // variable to store Button status
int Counter=0; // variable to store Counter value

Here, we have taken 2 variables, both integer types, one for storing the button
status and the other for storing the Counter value. The Counter value has been
initialized by 0.

Button_state=digitalRead(Button); // check if button is pressed

This is the line which actually checks the state of the button whether it is in the
pressed state or released state and then stores that state in the “Button_state”
variable. The way we have connected our push button, “digitalRead” of a pressed
state will be 0 (LOW) while “digitalRead” of a released state will be 1 (HIGH).

if(Button_state == LOW) // if button is in pressed state
{
Counter = Counter + 1; // increment Counter by 1
delay(500); // wait for half a second

}

These lines are first comparing if the “Button_state” variable has detected a “LOW”
(a pressed state). And if this is true, then increment the Counter variable by 1 (which
was initially 0) and then wait for half a second (500ms).

void Beep_pattern1() // first beeping pattern
{
digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF
delay(50); // wait for 50ms

digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF



W
itB
lox

delay(50); // wait for 50ms

digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF
delay(50); // wait for 50ms

digitalWrite(Buzzer, HIGH); // Buzzer turned On
delay(50); // wait for 50ms
digitalWrite(Buzzer, LOW); // Buzzer turned OFF
delay(50); // wait for 50ms
}

Here, the buzzer is being turned On and Off with different delay durations and this is
what generates the particular beeping pattern. We are using 4 different patterns and
using them as functions “Beep_pattern1()”, “Beep_pattern2()”, “Beep_pattern3()”
and “Beep_pattern4()”.

Note that throughout the program, we have used “=” for assigning a value to a
variable while “==” has been used for comparison and the comparison is always
inside the braces of an “if” statement such as:

if(Counter == 3)

Here, we are comparing if the value of the variable “Counter” is equal to 3 or not. If it
is 3, this “if” gives output as True. If, however, it is not 3, this “if” gives output as
False.

Counter = 0;

Here, we are assigning the variable “Counter” the value 0. There is no necessity to
stop at 3 or 4 beeping patterns. The integer variable “Counter” can very well
accommodate values up to 65535. It is, however



W
itB
lox

Outcome and Observations:

1. For Part 1, once you are done compiling and uploading the code to the
Arduino, you will observe the following:

a. When you press the Button and keep it pressed, the Buzzer turns On
and Stays On as long as the Button remains pressed.

b. When you release the Button and it stays released, the Buzzer turns Off
and Stays Off as long as the Button remains released.

c. No matter how fast or slow you press the Button, the Buzzer stays On
when the Button is pressed and stays Off when the Button is released.

This type of behavior is called “Momentary” because the state of the output
(the Buzzer) entirely depends on the state of the Input (the push button).
Button On makes Buzzer On and Button Off makes Buzzer Off.

2. For Part 2, once you are done compiling and uploading the code to the
Arduino, you will observe the following:

a. Initially, the Buzzer remains Off.

b. When the push button is pressed for the first time, the Counter value
increments from 0 to 1 and plays the 1st beeping pattern on the Buzzer.

c. When the push button is pressed for the second time, the Counter value
increments from 1 to 2 and plays the 2nd beeping pattern on the Buzzer.

d. When the push button is pressed for the third time, the Counter value
increments from 2 to 3 and plays the 3rd beeping pattern on the Buzzer.

e. When the push button is pressed for the fourth time, the Counter value
increments from 3 to 4 and plays the 4th beeping pattern on the Buzzer.

f. When the push button is pressed for the fifth time, the Counter value
increments from 4 to 5 and the Counter value is re-initialized to 0. This
operation readies the entire setup to start over again.


