
W
itB
lox

Activity: Make an Automatic Intrusion Alarm System

Objective:

Creating an Automatic Intrusion Alarm system using an IR sensor, Arduino, and a
buzzer can be a valuable project to enhance home security and provide basic
protection against thefts and burglaries involving break-ins. This project aims to
provide an easy, hands-on and educational way to understand what are the different
parts for a basic home security system and how an Arduino can be used to
implement such a system with minimal coding and hardware.

This system makes use of an IR sensor to detect the presence of any unwanted
person who has broken into the house, an Arduino to set a defined logic for the
system’s operation and finally a Buzzer to notify the user or people about the
attempt of intrusion going on. Two status LEDs, one Red and one Green, are also
used to visually indicate whether the system is armed for use or not.

So, in today’s activity we will learn how to make an automatic intrusion alarm system
with arming and disarming settings using an Arduino, a Buzz blox and the IR
Distance sensor blox.



W
itB
lox

Materials Required:

S.no. Part Qty Image

1 Arduino (Nano / UNO) 1

2 Breadboard 1

3 USB cable for Arduino 1

4 Connection Wires
(M - M)

10



W
itB
lox

5 Buzz Blox 1

6 5mm Red LED 1

7 5mm Green LED 1

8 1k resistor
(Brown Black Red
Golden)

2

9 Distance Sensor Blox 1



W
itB
lox

Connection Diagram:

The connection diagram shown in the image below is based on the Arduino UNO.

Explanation:

The connection diagrams shown in both the images show the connections between
the Arduino, the Input and the Output. The Distance sensor blox and the Push
Button are the Inputs for the Arduino while the Buzzer and the Red and the Green
LEDs are the Outputs for the Arduino.



W
itB
lox

When we carefully observe the connection diagrams, we find that:

1. The Green LED is connected such that its +ve terminal is connected to
Arduino digital pin 2 (D2) and its -ve terminal is connected to one side of the
1k resistor. The other side of the 1k resistor is connected to the -ve of the
breadboard. The Arduino - Green LED connection is shown by the green line
in the diagram above.

2. The Red LED is connected such that its +ve terminal is connected to Arduino
digital pin 3 (D3) and its -ve terminal is connected to one side of the 1k
resistor. The other side of the 1k resistor is connected to the -ve of the
breadboard. The Arduino - Red LED connection is shown by the pink line in
the diagram above.

3. The Push Button is connected such that its top-right pin is connected to the
+ve of the breadboard through a 10k pull-up resistor and its bottom-left pin is
connected to the -ve of the breadboard. Additionally, its top-right pin is also
connected to Arduino digital pin 4 (D4). The Arduino - Button connection is
shown by the orange line in the diagram above.

4. The Buzz blox is connected such that its +ve power pin (2nd pin from the top)
is connected to +ve of the breadboard while its -ve terminal is connected to
the -ve of the breadboard. The Data input pin of the Buzz blox is connected to
Arduino digital pin 5 (D5). The Arduino - Buzzer connection is shown by the
brown line in the diagram above.

5. The Distance sensor blox is connected such that its +ve power pin (2nd pin
from the top) is connected to the 5v pin of the Arduino and its -ve power pin
(4th pin from the top) is connected to the Gnd pin of the Arduino. The Data
output pin of the Distance sensor blox (3rd pin from the top) is connected to
Arduino digital pin 6 (D6). The Arduino - Distance sensor blox connection is
shown by the blue line in the diagram above.

6. Finally, the Gnd pin of the Arduino is connected to the -ve of the breadboard.
The Arduino is connected to the computer through the USB cable which
serves for providing power, program upload and bi-directional serial data
communication with the computer.



W
itB
lox

Arduino Code:

Here is the complete Arduino code for making an Automatic Intrusion Alarm System
using Distance sensor blox, Buzzer, Button, LEDs and Arduino.

#define Green 2 // Green for pin 2
#define Red 3 // Red for pin 3
#define Button 4 // Button for pin 4
#define Buzzer 5 // Buzzer for pin 5
#define Sensor 6 // Sensor for pin 6

int sensor_state; // for sensor store
int button_state; // for button store
int count; // for count store

void setup()
{

pinMode(Green, OUTPUT); // Green as Output
pinMode(Red, OUTPUT); // Red as Output
pinMode(Button, INPUT); // Button as Input
pinMode(Buzzer, OUTPUT); // Buzzer as Output
pinMode(Sensor, INPUT); // Sensor as Input

digitalWrite(Red,LOW); // Turn Off Red LED
digitalWrite(Green,HIGH); // Turn On Green LED

}

void loop()
{

button_state = digitalRead(Button); // check Button

if(button_state == 0) // if pressed
{

count = count + 1; // increment count
delay(500); // wait for 500ms

}

if(count == 1) // pressed once



W
itB
lox

{
digitalWrite(Red,HIGH); // Red LED On
digitalWrite(Green,LOW); // Green LED Off

sensor_state = digitalRead(Sensor); // check Sensor

if(sensor_state == 1) // if sensor active
{

digitalWrite(Buzzer,HIGH); // turn Buzzer On
}

}

if(count == 2) // pressed twice
{

count = 0 ; // reset count
digitalWrite(Buzzer,LOW); // turn Buzzer On
digitalWrite(Red,LOW); // Red LED Off
digitalWrite(Green,HIGH); // Green LED On

}
}

Explanation:

#define Green 2 // Green for pin 2
#define Red 3 // Red for pin 3
#define Button 4 // Button for pin 4
#define Buzzer 5 // Buzzer for pin 5
#define Sensor 6 // Sensor for pin 6

int sensor_state; // for sensor store
int button_state; // for button store
int count; // for count store

Here, we are declaring that:

1. Arduino digital pin 2 (D2) will be referred to as “Green” as it is used for the
Green LED.

2. Arduino digital pin 3 (D3) will be referred to as “Red” as it is used for the Red
LED.



W
itB
lox

3. Arduino digital pin 4 (D4) will be referred to as “Button” as it is used for the
Button.

4. Arduino digital pin 5 (D5) will be referred to as “Buzzer” as it is used for the
Buzz blox.

5. Arduino digital pin 5 (D6) will be referred to as “Sensor” as it is used for the
Distance sensor blox.

6. We are taking three integer type variables and naming them “sensor_state”,
“button_state” and “count” as they are used for storing the state of the sensor,
the button and the counter.

void setup()
{

pinMode(Green, OUTPUT); // Green as Output
pinMode(Red, OUTPUT); // Red as Output
pinMode(Button, INPUT); // Button as Input
pinMode(Buzzer, OUTPUT); // Buzzer as Output
pinMode(Sensor, INPUT); // Sensor as Input

digitalWrite(Red,LOW); // Turn Off Red LED
digitalWrite(Green,HIGH); // Turn On Green LED

}

Here, inside the setup function, we are declaring that the “Buzzer” pin, the “Red” pin
and the “Green” pin will be used as an Output pin and the “Sensor” pin and the
“Button” pin will be used as Input pins. This needs to be done just once. Next, we
turn the Green LED On and the Red LED Off.

void loop()
{

button_state = digitalRead(Button); // check Button

if(button_state == 0) // if pressed
{

count = count + 1; // increment count
delay(500); // wait for 500ms

}

if(count == 1) // pressed once
{

digitalWrite(Red,HIGH); // Red LED On



W
itB
lox

digitalWrite(Green,LOW); // Green LED Off

sensor_state = digitalRead(Sensor); // check Sensor

if(sensor_state == 1) // if sensor active
{

digitalWrite(Buzzer,HIGH); // turn Buzzer On
}

}

if(count == 2) // pressed twice
{

count = 0 ; // reset count
digitalWrite(Buzzer,LOW); // turn Buzzer On
digitalWrite(Red,LOW); // Red LED Off
digitalWrite(Green,HIGH); // Green LED On

}
}

Here, in the loop function, first the state of the Push button is checked. If the Button
is pressed, the counter is incremented by 1. Triggering the IR sensor does not
trigger the alarm as long as the button is not pressed once. Pressing the Button
once Arms the alarm system and pressing it again disarms the system.

When the system is in the Armed state, triggering the IR sensor triggers the Buzzer
which stays On indefinitely as long as the Button is not pressed again or the Arduino
is reset or the power is turned Off.

When the Buzzer is On, pressing the button turns the Buzzer off and puts the
system back in the disarmed mode. As for the Red and Green LEDs, the Red LED
stays On and the Green LED stays Off when the system is in the armed state and
the Green LED stays On and the Red LED stays Off when the system is in the
disarmed state.



W
itB
lox

Outcome and Observations:

1. Once the Arduino code is compiled and uploaded, the Buzzer and the Red
remain Off while the Green LED remains On.

2. The system is now in the disarmed mode. In this mode, triggering the IR
sensor does not trigger the Buzzer.

3. Now, when we press and release the Button once, the Green LED turns Off
and the Red LED turns On indicating that the system is now armed. Now, if we
trigger the IR sensor, the buzzer turns On and stays On.

4. The Buzzer can only be turned off if:
a. The Button is pressed again to disarm the system.
b. Reset button is pressed on the Arduino.
c. Power is disconnected from the system.


